The TouchType
A mobile communication device for the blind and deaf-blind.

Grant H. Bartel
Western Washington University, Electronics Engineering Technology
OVERVIEW

- Introduction
- Comparable Products
- Product Implementation
- Sustainability and Bottom Line
- Social and Community Impact
- Presentation Recap
A blind and deaf-blind mobile communication device implementing GSM.

- Implements a solenoid system for user display and a Braille keypad for user maneuverability.

- Utilizes features related to cellular telephones.
 - Speed dial, contact storage, vibrating notification, etc.

- Marketed for deaf-blind users, but incorporated for blind and Braille-competent users as well.
COMPARABLE PRODUCTS

- Prototypes and concepts comparable to the Touchtype.
 - Touch Messenger by Samsung. [1]
 - Braille Phone by Spice Telecom. [2]
 - B-Touch by Zhenwei You. [3]

- TouchType incorporates effective product aspects while disregarding costly additions.

- Main advantages of TouchType: affordability and simplicity.
COMPARABLE PRODUCTS

- **Touch Messenger**
 - 2 character input keypad
 - 14 character display
 - Prototype only

- **Braille Phone**
 - Multi-tap input keypad
 - No text-messaging
 - Concept only

- **B-Touch**
 - Braille bump touch-screen
 - Message playback via voice synthesis
 - Concept only
PRODUCT IMPLEMENTATION

- **Hardware Requirements**
 - Microcontroller, peripheral devices, communication, etc.

- **Software Requirements**
 - Real-time preemptive kernel, main functions, etc.

- **User Interface**
 - Simplicity and intuitiveness.
PRODUCT IMPLEMENTATION

Hardware Requirements

- **Hardware**: Microcontroller, GSM module, Braille keypad, solenoid display, headphone jack, text-to-voice synthesizer, speed/volume control, vibrating motor, and dual power-supply.
PRODUCT IMPLEMENTATION
Hardware Requirements

- **Microcontroller**
 - Freescale 9S12DP512: 16-bit bus, 25 MHz frequency, SPI, SCI, GPIO.

- **GSM module**
 - Controls communication gateway between TouchType and other communication devices.
 - Support for GSM, GPRS, and TTY.

- **Braille keypad**
 - Multi-tap buttons.
 - 13 for alpha-numeric, 1 for punctuation, and 3 for user functions.
PRODUCT IMPLEMENTATION

Hardware Requirements

- **Solenoid display**
 - 6 solenoids create the standard English Braille layout.
 - Firing speeds controlled by speed/volume control.

- **Headphone jack**
 - Enables blind users to listen to messages.
 - Load detection for switching between Blind and Deaf-Blind Modes.

- **Text-to-voice synthesizer**
 - Supports Blind Mode’s voice recall.

- **Speed/volume control**
 - Implemented using a potentiometer.
 - Controls solenoid firing speeds while in Deaf-Blind Mode, and controls headphone volume while in Blind Mode.
PRODUCT IMPLEMENTATION
Hardware Requirements

- **Vibrating Motor**
 - Notifies user of different function entries and system alerts.
 - Send message, receive message, store contacts, button press, etc.

- **Dual power-supply**
 - Controls power distribution of rechargeable battery or AC plug-in.
 - Helps conserve power for continuous use of device.
PRODUCT IMPLEMENTATION
Software Requirements

- **Software**: MicroC/OS-II, GSM transmit/receive, Braille input, Braille output, text-to-voice converter, vibrating motor control, headphone load monitor, and power monitor.

- **MicroC/OS-II**
 - Pre-emptive real-time kernel which controls priorities for all functions mentioned below.

- **GSM transmit/receive**
 - Controls transmissions and receptions of a messages.

- **Braille input**
 - Accurately stores messages entered through keypad.
 - Monitors for specific button pressed and time-delays between multi-taps.
 - Corrects switch de-bouncing.
PRODUCT IMPLEMENTATION
Software Requirements

- **Braille output**
 - Displays recalled message one character at a time through solenoids.
 - Controls firing speed corresponding to the potentiometer setting.

- **Text-to-voice converter**
 - Converts text message into playable audio message, and sends the message to headphone jack.
 - Controls volume corresponding to the potentiometer setting.

- **Vibrating motor control**
 - Enables vibration patterns depending on current user situation.
PRODUCT IMPLEMENTATION
Software Requirements

- Headphone load monitor
 - Monitors headphone jack for appropriate load.
 - Controls whether device is in Blind or Deaf-Blind Modes.

- Power monitor
 - Monitors power consumption, and appropriately controls power per peripheral device.
PRODUCT IMPLEMENTATION
User Interface

- Simple to learn multi-tap system with intuitive button features.
- Several features include message recall, message sending, and contact storage.
- Detailed description of these features illustrated in accompanying paper.
SUSTAINABILITY AND BOTTOM LINE

- Incorporate RoHS certified parts to address environmental issues.
- Cost of initial prototype: ~$310.
 - Price only reflects previously mentioned hardware with component (resistors, capacitors, inductors) wiggle room.
- Cost of closest comparable device on the market (i.e. Braille displays): $1,400-$15,000. [4,5]
 - Between 450% and 4800% greater than cost of initial prototype.
- In the U.S., 2.5 million people are blind, 70,000 to 100,000 of which are also deaf. [6,7]
- Worldwide, 314 million people are visually impaired, 87% of whom live in developing countries. [8]
The TouchType as a multi-faceted, modern device.
Features attained and disregarded from comparable prototypes and concepts.
Physical implementation of a simple idea.
Product sustainability and social impact on the local as well as global community.
REFERENCES

PERSONAL INFORMATION

Grant H. Bartel
Western Washington University
Electronics Engineering Technology
Class of 2010
grant.bartel@gmail.com